Role of plasma membrane calcium ATPases in calcium clearance from olfactory sensory neurons.

نویسندگان

  • S Ponissery Saidu
  • S D Weeraratne
  • M Valentine
  • R Delay
  • Judith L Van Houten
چکیده

Odorants cause Ca(2+) to rise in olfactory sensory neurons (OSNs) first within the ciliary compartment, then in the dendritic knob, and finally in the cell body. Ca(2+) not only excites but also produces negative feedback on the transduction pathway. To relieve this Ca(2+)-dependent adaptation, Ca(2+) must be cleared from the cilia and dendritic knob by mechanisms that are not well understood. This work focuses on the roles of plasma membrane calcium pumps (PMCAs) through the use of inhibitors and mice missing 1 of the 4 PMCA isoforms (PMCA2). We demonstrate a significant contribution of PMCAs in addition to contributions of the Na(+)/Ca(2+) exchanger and endoplasmic reticulum (ER) calcium pump to the rate of calcium clearance after OSN stimulation. PMCAs in neurons can shape the Ca(2+) signal. We discuss the contributions of the specific PMCA isoforms to the shape of the Ca(2+) transient that controls signaling and adaptation in OSNs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plasma membrane calcium pumps in mouse olfactory sensory neurons.

We report here the presence of specific plasma membrane calcium pumps (PMCAs) in mouse olfactory sensory neurons. All 4 isoforms are present as shown by deconvolution microscopy, and the specific splice variants are identified by reverse transcriptase (RT)-polymerase chain reaction (PCR). The PMCAs are present on the cell body, dendrite, knob, and cilia, but the different isoforms of PMCAs are ...

متن کامل

Limits of Calcium Clearance by Plasma Membrane Calcium ATPase in Olfactory Cilia

BACKGROUND In any fine sensory organelle, a small influx of Ca(2+) can quickly elevate cytoplasmic Ca(2+). Mechanisms must exist to clear the ciliary Ca(2+) before it reaches toxic levels. One such organelle has been well studied: the vertebrate olfactory cilium. Recent studies have suggested that clearance from the olfactory cilium is mediated in part by plasma membrane Ca(2+)-ATPase (PMCA). ...

متن کامل

Role of a voltage-sensitive calcium channel blocker on inhibition of apoptosis in sensory neurons of cultured dorsal root ganglia in adult rat

Introduction: Under pathological conditions, abnormal increase in intracellular calcium concentrations is believed to induce cell death. In the present study, a voltage-sensitive calcium channel blocker (loperamide hydrochloride) was used to investigate its role in inhibition of apoptosis in sensory neurons of cultured spinal dorsal root ganglia (DRG). Methods: L5 DRG from adult rats were di...

متن کامل

Effects of Anoxia and Aglycemia on Cytosolic Calcium Regulation in Rat Sensory Neurons

Nociceptive neurons play an important role in ischemia by sensing and transmitting information to the CNS and by secreting peptides and nitric oxide, which can have local effects. While these responses are probably primarily mediated by acid sensing channels, other events occurring in ischemia may also influence neuron function. In this study, we have investigated the effects of anoxia and anox...

متن کامل

Plasma membrane calcium ATPase deficiency causes neuronal pathology in the spinal cord: a potential mechanism for neurodegeneration in multiple sclerosis and spinal cord injury.

Dysfunction and death of spinal cord neurons are critical determinants of neurological deficits in various pathological conditions, including multiple sclerosis (MS) and spinal cord injury. Yet, the molecular mechanisms underlying neuronal/axonal damage remain undefined. Our previous studies raised the possibility that a decrease in the levels of plasma membrane calcium ATPase isoform 2 (PMCA2)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Chemical senses

دوره 34 4  شماره 

صفحات  -

تاریخ انتشار 2009